Fleet management for ride-pooling with meeting points at scale: a case study in the five boroughs of New York City

25 Apr 2021  ·  Motahare Mounesan, Vindula Jayawardana, Yaocheng Wu, Samitha Samaranayake, Huy T. Vo ·

Introducing meeting points to ride-pooling (RP) services has been shown to increase the satisfaction level of both riders and service providers. Passengers may choose to walk to a meeting point for a cost reduction. Drivers may also get matched with more riders without making additional stops. There are economic benefits of using ride-pooling with meeting points (RPMP) compared to the traditional RP services. Many RPMP models have been proposed to better understand their benefits. However, most prior works study RPMP either with a restricted set of parameters or at a small scale due to the expensive computation involved. In this paper, we propose STaRS+, a scalable RPMP framework that is based on a comprehensive integer linear programming model. The high scalability of STaRS+ is achieved by utilizing a heuristic optimization strategy along with a novel shortest-path caching scheme. We applied our model to the NYC metro area to evaluate the scalability of the framework and demonstrate the importance of city-scale simulations. Our results show that city-scale simulations can reveal valuable insights for city planners that are not always visible at smaller scales. To the best of our knowledge, STaRS+ is the first study on the RPMP that can solve large-scale instances on the order of the entire NYC metro area.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here