First and Second Order Dynamics in a Hierarchical SOM system for Action Recognition

13 Apr 2021  ·  Zahra Gharaee, Peter Gärdenfors, Magnus Johnsson ·

Human recognition of the actions of other humans is very efficient and is based on patterns of movements. Our theoretical starting point is that the dynamics of the joint movements is important to action categorization. On the basis of this theory, we present a novel action recognition system that employs a hierarchy of Self-Organizing Maps together with a custom supervised neural network that learns to categorize actions. The system preprocesses the input from a Kinect like 3D camera to exploit the information not only about joint positions, but also their first and second order dynamics. We evaluate our system in two experiments with publicly available data sets, and compare its performance to the performance with less sophisticated preprocessing of the input. The results show that including the dynamics of the actions improves the performance. We also apply an attention mechanism that focuses on the parts of the body that are the most involved in performing the actions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here