Finding and Exploring Promising Search Space for the 0-1 Multidimensional Knapsack Problem

8 Oct 2022  ·  Jitao Xu, Hongbo Li, Minghao Yin ·

The 0-1 Multidimensional Knapsack Problem (MKP) is a classical NP-hard combinatorial optimization problem with many engineering applications. In this paper, we propose a novel algorithm combining evolutionary computation with exact algorithm to solve the 0-1 MKP. It maintains a set of solutions and utilizes the information from the population to extract good partial assignments. To find high-quality solutions, an exact algorithm is applied to explore the promising search space specified by the good partial assignments. The new solutions are used to update the population. Thus, the good partial assignments evolve towards a better direction with the improvement of the population. Extensive experimentation with commonly used benchmark sets shows that our algorithm outperforms the state of the art heuristic algorithms, TPTEA and DQPSO. It finds better solutions than the existing algorithms and provides new lower bounds for 8 large and hard instances.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here