Feedback Delay Network Optimization

17 Feb 2024  ·  Gloria Dal Santo, Karolina Prawda, Sebastian J. Schlecht, Vesa Välimäki ·

A common bane of artificial reverberation algorithms is spectral coloration, typically manifesting as metallic ringing, leading to a degradation in the perceived sound quality. This paper presents an optimization framework where a differentiable feedback delay network is used to learn a set of parameters to reduce coloration iteratively. The parameters under optimization include the feedback matrix, as well as the input and output gains. The optimization objective is twofold: to maximize spectral flatness through a spectral loss while maintaining temporal density by penalizing sparseness in the parameter values. A favorable narrower distribution of modal excitation is achieved while maintaining the desired impulse response density. In a subjective assessment, the new method proves effective in reducing perceptual coloration of late reverberation. The proposed method achieves computational savings compared to the baseline while preserving its performance. The effectiveness of this work is demonstrated through two application scenarios where natural-sounding synthetic impulse responses are obtained via the introduction of attenuation filters and an optimizable scattering feedback matrix.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here