Fast Rates by Transferring from Auxiliary Hypotheses

4 Dec 2014  ·  Ilja Kuzborskij, Francesco Orabona ·

In this work we consider the learning setting where, in addition to the training set, the learner receives a collection of auxiliary hypotheses originating from other tasks. We focus on a broad class of ERM-based linear algorithms that can be instantiated with any non-negative smooth loss function and any strongly convex regularizer. We establish generalization and excess risk bounds, showing that, if the algorithm is fed with a good combination of source hypotheses, generalization happens at the fast rate $\mathcal{O}(1/m)$ instead of the usual $\mathcal{O}(1/\sqrt{m})$. On the other hand, if the source hypotheses combination is a misfit for the target task, we recover the usual learning rate. As a byproduct of our study, we also prove a new bound on the Rademacher complexity of the smooth loss class under weaker assumptions compared to previous works.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here