Fairness Feedback Loops: Training on Synthetic Data Amplifies Bias

12 Mar 2024  ·  Sierra Wyllie, Ilia Shumailov, Nicolas Papernot ·

Model-induced distribution shifts (MIDS) occur as previous model outputs pollute new model training sets over generations of models. This is known as model collapse in the case of generative models, and performative prediction or unfairness feedback loops for supervised models. When a model induces a distribution shift, it also encodes its mistakes, biases, and unfairnesses into the ground truth of its data ecosystem. We introduce a framework that allows us to track multiple MIDS over many generations, finding that they can lead to loss in performance, fairness, and minoritized group representation, even in initially unbiased datasets. Despite these negative consequences, we identify how models might be used for positive, intentional, interventions in their data ecosystems, providing redress for historical discrimination through a framework called algorithmic reparation (AR). We simulate AR interventions by curating representative training batches for stochastic gradient descent to demonstrate how AR can improve upon the unfairnesses of models and data ecosystems subject to other MIDS. Our work takes an important step towards identifying, mitigating, and taking accountability for the unfair feedback loops enabled by the idea that ML systems are inherently neutral and objective.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here