Extended Kalman Filtering for Recursive Online Discrete-Time Inverse Optimal Control

16 Mar 2024  ·  Tian Zhao, Timothy L. Molloy ·

We formulate the discrete-time inverse optimal control problem of inferring unknown parameters in the objective function of an optimal control problem from measurements of optimal states and controls as a nonlinear filtering problem. This formulation enables us to propose a novel extended Kalman filter (EKF) for solving inverse optimal control problems in a computationally efficient recursive online manner that requires only a single pass through the measurement data. Importantly, we show that the Jacobians required to implement our EKF can be computed efficiently by exploiting recent Pontryagin differentiable programming results, and that our consideration of an EKF enables the development of first-of-their-kind theoretical error guarantees for online inverse optimal control with noisy incomplete measurements. Our proposed EKF is shown to be significantly faster than an alternative unscented Kalman filter-based approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here