Exploring Time Granularity on Temporal Graphs for Dynamic Link Prediction in Real-world Networks

21 Nov 2023  ·  Xiangjian Jiang, Yanyi Pu ·

Dynamic Graph Neural Networks (DGNNs) have emerged as the predominant approach for processing dynamic graph-structured data. However, the influence of temporal information on model performance and robustness remains insufficiently explored, particularly regarding how models address prediction tasks with different time granularities. In this paper, we explore the impact of time granularity when training DGNNs on dynamic graphs through extensive experiments. We examine graphs derived from various domains and compare three different DGNNs to the baseline model across four varied time granularities. We mainly consider the interplay between time granularities, model architectures, and negative sampling strategies to obtain general conclusions. Our results reveal that a sophisticated memory mechanism and proper time granularity are crucial for a DGNN to deliver competitive and robust performance in the dynamic link prediction task. We also discuss drawbacks in considered models and datasets and propose promising directions for future research on the time granularity of temporal graphs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here