Exact Fractional Inference via Re-Parametrization & Interpolation between Tree-Re-Weighted- and Belief Propagation- Algorithms

25 Jan 2023  ·  Hamidreza Behjoo, Michael Chertkov ·

Inference efforts -- required to compute partition function, $Z$, of an Ising model over a graph of $N$ ``spins" -- are most likely exponential in $N$. Efficient variational methods, such as Belief Propagation (BP) and Tree Re-Weighted (TRW) algorithms, compute $Z$ approximately minimizing respective (BP- or TRW-) free energy. We generalize the variational scheme building a $\lambda$-fractional-homotopy, $Z^{(\lambda)}$, where $\lambda=0$ and $\lambda=1$ correspond to TRW- and BP-approximations, respectively, and $Z^{(\lambda)}$ decreases with $\lambda$ monotonically. Moreover, this fractional scheme guarantees that in the attractive (ferromagnetic) case $Z^{(TRW)}\geq Z^{(\lambda)}\geq Z^{(BP)}$, and there exists a unique (``exact") $\lambda_*$ such that, $Z=Z^{(\lambda_*)}$. Generalizing the re-parametrization approach of \citep{wainwright_tree-based_2002} and the loop series approach of \citep{chertkov_loop_2006}, we show how to express $Z$ as a product, $\forall \lambda:\ Z=Z^{(\lambda)}{\cal Z}^{(\lambda)}$, where the multiplicative correction, ${\cal Z}^{(\lambda)}$, is an expectation over a node-independent probability distribution built from node-wise fractional marginals. Our theoretical analysis is complemented by extensive experiments with models from Ising ensembles over planar and random graphs of medium- and large- sizes. The empirical study yields a number of interesting observations, such as (a) ability to estimate ${\cal Z}^{(\lambda)}$ with $O(N^4)$ fractional samples; (b) suppression of $\lambda_*$ fluctuations with increase in $N$ for instances from a particular random Ising ensemble.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here