Equidistribution results for self-similar measures

26 Feb 2020  ·  Simon Baker ·

A well known theorem due to Koksma states that for Lebesgue almost every $x>1$ the sequence $(x^n)_{n=1}^{\infty}$ is uniformly distributed modulo one. In this paper we give sufficient conditions for an analogue of this theorem to hold for self-similar measures. Our approach applies more generally to sequences of the form $(f_{n}(x))_{n=1}^{\infty}$ where $(f_n)_{n=1}^{\infty}$ is a sequence of sufficiently smooth real valued functions satisfying a nonlinearity assumption. As a corollary of our main result, we show that if $C$ is equal to the middle third Cantor set and $t\geq 1$, then with respect to the Cantor-Lebesgue measure on $C+t$ the sequence $(x^n)_{n=1}^{\infty}$ is uniformly distributed for almost every $x$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Dynamical Systems Classical Analysis and ODEs Number Theory