Equalization in Dispersion-Managed Systems Using Learned Digital Back-Propagation

In this paper, we investigate the use of the learned digital back-propagation (LDBP) for equalizing dual-polarization fiber-optic transmission in dispersion-managed (DM) links. LDBP is a deep neural network that optimizes the parameters of DBP using the stochastic gradient descent. We evaluate DBP and LDBP in a simulated WDM dual-polarization fiber transmission system operating at the bitrate of 256 Gbit/s per channel, with a dispersion map designed for a 2016 km link with 15% residual dispersion. Our results show that in single-channel transmission, LDBP achieves an effective signal-to-noise ratio improvement of 6.3 dB and 2.5 dB, respectively, over linear equalization and DBP. In WDM transmission, the corresponding $Q$-factor gains are 1.1 dB and 0.4 dB, respectively. Additionally, we conduct a complexity analysis, which reveals that a frequency-domain implementation of LDBP and DBP is more favorable in terms of complexity than the time-domain implementation. These findings demonstrate the effectiveness of LDBP in mitigating the nonlinear effects in DM fiber-optic transmission systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here