Enhancing Quantum Support Vector Machines through Variational Kernel Training

10 May 2023  ·  Nouhaila Innan, Muhammad Al-Zafar Khan, Biswaranjan Panda, Mohamed Bennai ·

Quantum machine learning (QML) has witnessed immense progress recently, with quantum support vector machines (QSVMs) emerging as a promising model. This paper focuses on the two existing QSVM methods: quantum kernel SVM (QK-SVM) and quantum variational SVM (QV-SVM). While both have yielded impressive results, we present a novel approach that synergizes the strengths of QK-SVM and QV-SVM to enhance accuracy. Our proposed model, quantum variational kernel SVM (QVK-SVM), leverages the quantum kernel and quantum variational algorithm. We conducted extensive experiments on the Iris dataset and observed that QVK-SVM outperforms both existing models in terms of accuracy, loss, and confusion matrix indicators. Our results demonstrate that QVK-SVM holds tremendous potential as a reliable and transformative tool for QML applications. Hence, we recommend its adoption in future QML research endeavors.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods