Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer

13 May 2024  ·  Chi-en Amy Tai, Alexander Wong ·

In 2020, prostate cancer saw a staggering 1.4 million new cases, resulting in over 375,000 deaths. The accurate identification of clinically significant prostate cancer is crucial for delivering effective treatment to patients. Consequently, there has been a surge in research exploring the application of deep neural networks to predict clinical significance based on magnetic resonance images. However, these networks demand extensive datasets to attain optimal performance. Recently, transfer learning emerged as a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data. In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer. The results demonstrate a remarkable improvement of over 30% in leave-one-out cross-validation accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here