Paper

Enhanced-rate Iterative Beamformers for Active IRS-assisted Wireless Communications

Compared to passive intelligent reflecting surface (IRS), active IRS is viewed as a more efficient promising technique to combat the double-fading impact in IRS-aided wireless network. In this paper, in order to boost the achievable rate of user in such a wireless network, three enhanced-rate iterative beamforming methods are proposed by designing the amplifying factors and the corresponding phases at active IRS. The first method, maximizing the simplified signal-to-noise ratio (Max-SSNR) is designed by omitting the cross-term in the definition of rate. Using the Rayleigh-Ritz (RR) theorem, Max-SSNR-RR is proposed to iteratively optimize the norm of beamforming vector and its associated normalized vector. In addition, generalized maximum ratio reflection (GMRR) is presented with a closed-form expression, which is motivated by the maximum ratio combining. To further improve rate, maximizing SNR (Max-SNR) is designed by fractional programming (FP), which is called Max-SNR-FP. Simulation results show that the proposed three methods make an obvious rate enhancement over Max-reflecting signal-to-noise ratio (Max-RSNR), maximum ratio reflection (MRR), selective ratio reflecting (SRR), equal gain reflection (EGR) and passive IRS, and are in increasing order of rate performance as follows: Max-SSNR-RR, GMRR, and Max-SNR-FP.

Results in Papers With Code
(↓ scroll down to see all results)