Energy-Efficient Secrecy in Wireless Networks Based on Random Jamming

15 Mar 2017  ·  Sheikholeslami Azadeh, Ghaderi Majid, Pishro-Nik Hossein, Goeckel Dennis ·

This paper considers secure energy-efficient routing in the presence of multiple passive eavesdroppers. Previous work in this area has considered secure routing assuming probabilistic or exact knowledge of the location and channel-state-information (CSI) of each eavesdropper. In wireless networks, however, the locations and CSIs of passive eavesdroppers are not known, making it challenging to guarantee secrecy for any routing algorithm. We develop an efficient (in terms of energy consumption and computational complexity) routing algorithm that does not rely on any information about the locations and CSIs of the eavesdroppers. Our algorithm guarantees secrecy even in disadvantaged wireless environments, where multiple eavesdroppers try to eavesdrop each message, are equipped with directional antennas, or can get arbitrarily close to the transmitter. The key is to employ additive random jamming to exploit inherent non-idealities of the eavesdropper's receiver, which makes the eavesdroppers incapable of recording the messages. We have simulated our proposed algorithm and compared it with existing secrecy routing algorithms in both single-hop and multi-hop networks. Our results indicate that when the uncertainty in the locations of eavesdroppers is high and/or in disadvantaged wireless environments, our algorithm outperforms existing algorithms in terms of energy consumption and secrecy.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Networking and Internet Architecture Cryptography and Security

Datasets


  Add Datasets introduced or used in this paper