Energy-Efficient Cell-Free Network Assisted by Hybrid RISs

4 Oct 2022  ·  Wanting Lyu, Yue Xiu, Songjie Yang, Chau Yuen, Zhongpei Zhang ·

In this letter, we investigate a cell-free network aided by hybrid reconfigurable intelligent surfaces (RISs), which consists of a mixture of passive and active elements that are capable of amplifying and reflecting the incident signal. To maximize the energy efficiency (EE) of the system, we formulate a joint transmit beamforming and RIS coefficients optimization problem. To deal with the fractional objective function, Dinkelbach transform, Lagrangian dual reformulation, and quadratic transform are utilized, with a block coordinate descent (BCD) based algorithm proposed to decouple the variables. In addition, successive convex approximation (SCA) method is applied to iteratively to tackle the non-convexity of the sub-problems. Simulation results illustrate the effectiveness and convergence of the proposed algorithm through analyzing the EE and sum rate performance with varying parameter settings. The proposed hybrid RISs schemes can achieve 92% of the sum rate but 188% of EE of active RISs schemes. As compared with passive RISs, 11% gain in sum rate can be achieved with comparable EE.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here