Efficient Multi-Agent Trajectory Planning with Feasibility Guarantee using Relative Bernstein Polynomial

23 Sep 2019  ·  Jungwon Park, Junha Kim, Inkyu Jang, H. Jin Kim ·

This paper presents a new efficient algorithm which guarantees a solution for a class of multi-agent trajectory planning problems in obstacle-dense environments. Our algorithm combines the advantages of both grid-based and optimization-based approaches, and generates safe, dynamically feasible trajectories without suffering from an erroneous optimization setup such as imposing infeasible collision constraints. We adopt a sequential optimization method with \textit{dummy agents} to improve the scalability of the algorithm, and utilize the convex hull property of Bernstein and relative Bernstein polynomial to replace non-convex collision avoidance constraints to convex ones. The proposed method can compute the trajectory for 64 agents on average 6.36 seconds with Intel Core i7-7700 @ 3.60GHz CPU and 16G RAM, and it reduces more than $50\%$ of the objective cost compared to our previous work. We validate the proposed algorithm through simulation and flight tests.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here