Efficient Heuristic Generation for Robot Path Planning with Recurrent Generative Model

7 Dec 2020  ·  Zhaoting Li, Jiankun Wang, Max Q. -H. Meng ·

Robot path planning is difficult to solve due to the contradiction between optimality of results and complexity of algorithms, even in 2D environments. To find an optimal path, the algorithm needs to search all the state space, which costs a lot of computation resource. To address this issue, we present a novel recurrent generative model (RGM) which generates efficient heuristic to reduce the search efforts of path planning algorithm. This RGM model adopts the framework of general generative adversarial networks (GAN), which consists of a novel generator that can generate heuristic by refining the outputs recurrently and two discriminators that check the connectivity and safety properties of heuristic. We test the proposed RGM module in various 2D environments to demonstrate its effectiveness and efficiency. The results show that the RGM successfully generates appropriate heuristic in both seen and new unseen maps with a high accuracy, demonstrating the good generalization ability of this model. We also compare the rapidly-exploring random tree star (RRT*) with generated heuristic and the conventional RRT* in four different maps, showing that the generated heuristic can guide the algorithm to find both initial and optimal solution in a faster and more efficient way.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here