Efficient Deep Learning of GMMs

15 Feb 2019  ·  Shirin Jalali, Carl Nuzman, Iraj Saniee ·

We show that a collection of Gaussian mixture models (GMMs) in $R^{n}$ can be optimally classified using $O(n)$ neurons in a neural network with two hidden layers (deep neural network), whereas in contrast, a neural network with a single hidden layer (shallow neural network) would require at least $O(\exp(n))$ neurons or possibly exponentially large coefficients. Given the universality of the Gaussian distribution in the feature spaces of data, e.g., in speech, image and text, our result sheds light on the observed efficiency of deep neural networks in practical classification problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here