Effective Action Recognition with Embedded Key Point Shifts

26 Aug 2020  ·  Haozhi Cao, Yuecong Xu, Jianfei Yang, Kezhi Mao, Jianxiong Yin, Simon See ·

Temporal feature extraction is an essential technique in video-based action recognition. Key points have been utilized in skeleton-based action recognition methods but they require costly key point annotation. In this paper, we propose a novel temporal feature extraction module, named Key Point Shifts Embedding Module ($KPSEM$), to adaptively extract channel-wise key point shifts across video frames without key point annotation for temporal feature extraction. Key points are adaptively extracted as feature points with maximum feature values at split regions, while key point shifts are the spatial displacements of corresponding key points. The key point shifts are encoded as the overall temporal features via linear embedding layers in a multi-set manner. Our method achieves competitive performance through embedding key point shifts with trivial computational cost, achieving the state-of-the-art performance of 82.05% on Mini-Kinetics and competitive performance on UCF101, Something-Something-v1, and HMDB51 datasets.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here