Paper

Edge Augmentation on Disconnected Graphs via Eigenvalue Elevation

The graph-theoretical task of determining most likely inter-community edges based on disconnected subgraphs' intra-community connectivity is proposed. An algorithm is developed for this edge augmentation task, based on elevating the zero eigenvalues of graph's spectrum. Upper bounds for eigenvalue elevation amplitude and for the corresponding augmented edge density are derived and are authenticated with simulation on random graphs. The algorithm works consistently across synthetic and real networks, yielding desirable performance at connecting graph components. Edge augmentation reverse-engineers graph partition under different community detection methods (Girvan-Newman method, greedy modularity maximization, label propagation, Louvain method, and fluid community), in most cases producing inter-community edges at >50% frequency.

Results in Papers With Code
(↓ scroll down to see all results)