Dynamic Multi-Behavior Sequence Modeling for Next Item Recommendation

28 Jan 2023  ·  Junsu Cho, Dongmin Hyun, Dong won Lim, Hyeon jae Cheon, Hyoung-iel Park, Hwanjo Yu ·

Sequential Recommender Systems (SRSs) aim to predict the next item that users will consume, by modeling the user interests within their item sequences. While most existing SRSs focus on a single type of user behavior, only a few pay attention to multi-behavior sequences, although they are very common in real-world scenarios. It is challenging to effectively capture the user interests within multi-behavior sequences, because the information about user interests is entangled throughout the sequences in complex relationships. To this end, we first address the characteristics of multi-behavior sequences that should be considered in SRSs, and then propose novel methods for Dynamic Multi-behavior Sequence modeling named DyMuS, which is a light version, and DyMuS+, which is an improved version, considering the characteristics. DyMuS first encodes each behavior sequence independently, and then combines the encoded sequences using dynamic routing, which dynamically integrates information required in the final result from among many candidates, based on correlations between the sequences. DyMuS+, furthermore, applies the dynamic routing even to encoding each behavior sequence to further capture the correlations at item-level. Moreover, we release a new, large and up-to-date dataset for multi-behavior recommendation. Our experiments on DyMuS and DyMuS+ show their superiority and the significance of capturing the characteristics of multi-behavior sequences.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here