DSAF: A Dual-Stage Adaptive Framework for Numerical Weather Prediction Downscaling

19 Dec 2023  ·  Pengwei Liu, Wenwei Wang, Bingqing Peng, Binqing Wu, Liang Sun ·

While widely recognized as one of the most substantial weather forecasting methodologies, Numerical Weather Prediction (NWP) usually suffers from relatively coarse resolution and inevitable bias due to tempo-spatial discretization, physical parametrization process, and computation limitation. With the roaring growth of deep learning-based techniques, we propose the Dual-Stage Adaptive Framework (DSAF), a novel framework to address regional NWP downscaling and bias correction tasks. DSAF uniquely incorporates adaptive elements in its design to ensure a flexible response to evolving weather conditions. Specifically, NWP downscaling and correction are well-decoupled in the framework and can be applied independently, which strategically guides the optimization trajectory of the model. Utilizing a multi-task learning mechanism and an uncertainty-weighted loss function, DSAF facilitates balanced training across various weather factors. Additionally, our specifically designed attention-centric learnable module effectively integrates geographic information, proficiently managing complex interrelationships. Experimental validation on the ECMWF operational forecast (HRES) and reanalysis (ERA5) archive demonstrates DSAF's superior performance over existing state-of-the-art models and shows substantial improvements when existing models are augmented using our proposed modules. Code is publicly available at https://github.com/pengwei07/DSAF.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here