Enhancing Distributional Stability among Sub-populations

7 Jun 2022  ·  Jiashuo Liu, Jiayun Wu, Jie Peng, Xiaoyu Wu, Yang Zheng, Bo Li, Peng Cui ·

Enhancing the stability of machine learning algorithms under distributional shifts is at the heart of the Out-of-Distribution (OOD) Generalization problem. Derived from causal learning, recent works of invariant learning pursue strict invariance with multiple training environments. Although intuitively reasonable, strong assumptions on the availability and quality of environments are made to learn the strict invariance property. In this work, we come up with the ``distributional stability" notion to mitigate such limitations. It quantifies the stability of prediction mechanisms among sub-populations down to a prescribed scale. Based on this, we propose the learnability assumption and derive the generalization error bound under distribution shifts. Inspired by theoretical analyses, we propose our novel stable risk minimization (SRM) algorithm to enhance the model's stability w.r.t. shifts in prediction mechanisms ($Y|X$-shifts). Experimental results are consistent with our intuition and validate the effectiveness of our algorithm. The code can be found at https://github.com/LJSthu/SRM.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here