Distributed Subgradient Algorithm for Multi-Agent Optimization With Dynamic Stepsize

In this paper, we consider distributed convex optimization problems on multi-agent networks. We develop and analyze the distributed gradient method which allows each agent to compute its dynamic stepsize by utilizing the time-varying estimate of the local function value at the global optimal solution. Our approach can be applied to both synchronous and asynchronous communication protocols. Specifically, we propose the distributed subgradient with uncoordinated dynamic stepsizes (DS-UD) algorithm for synchronous protocol and the AsynDGD algorithm for asynchronous protocol. Theoretical analysis shows that the proposed algorithms guarantee that all agents reach a consensus on the solution to the multi-agent optimization problem. Moreover, the proposed approach with dynamic stepsizes eliminates the requirement of diminishing stepsize in existing works. Numerical examples of distributed estimation in sensor networks are provided to illustrate the effectiveness of the proposed approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here