Distributed Stochastic Optimization under a General Variance Condition

30 Jan 2023  ·  Kun Huang, Xiao Li, Shi Pu ·

Distributed stochastic optimization has drawn great attention recently due to its effectiveness in solving large-scale machine learning problems. Though numerous algorithms have been proposed and successfully applied to general practical problems, their theoretical guarantees mainly rely on certain boundedness conditions on the stochastic gradients, varying from uniform boundedness to the relaxed growth condition. In addition, how to characterize the data heterogeneity among the agents and its impacts on the algorithmic performance remains challenging. In light of such motivations, we revisit the classical Federated Averaging (FedAvg) algorithm (McMahan et al., 2017) as well as the more recent SCAFFOLD method (Karimireddy et al., 2020) for solving the distributed stochastic optimization problem and establish the convergence results under only a mild variance condition on the stochastic gradients for smooth nonconvex objective functions. Almost sure convergence to a stationary point is also established under the condition. Moreover, we discuss a more informative measurement for data heterogeneity as well as its implications.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here