Discovering Latent Representations of Relations for Interacting Systems

10 Nov 2021  ·  Dohae Lee, Young Jin Oh, In-Kwon Lee ·

Systems whose entities interact with each other are common. In many interacting systems, it is difficult to observe the relations between entities which is the key information for analyzing the system. In recent years, there has been increasing interest in discovering the relationships between entities using graph neural networks. However, existing approaches are difficult to apply if the number of relations is unknown or if the relations are complex. We propose the DiScovering Latent Relation (DSLR) model, which is flexibly applicable even if the number of relations is unknown or many types of relations exist. The flexibility of our DSLR model comes from the design concept of our encoder that represents the relation between entities in a latent space rather than a discrete variable and a decoder that can handle many types of relations. We performed the experiments on synthetic and real-world graph data with various relationships between entities, and compared the qualitative and quantitative results with other approaches. The experiments show that the proposed method is suitable for analyzing dynamic graphs with an unknown number of complex relations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here