Diffusion on language model embeddings for protein sequence generation

Protein design requires a deep understanding of the inherent complexities of the protein universe. While many efforts lean towards conditional generation or focus on specific families of proteins, the foundational task of unconditional generation remains underexplored and undervalued. Here, we explore this pivotal domain, introducing DiMA, a model that leverages continuous diffusion on embeddings derived from the protein language model, ESM-2, to generate amino acid sequences. DiMA surpasses leading solutions, including autoregressive transformer-based and discrete diffusion models, and we quantitatively illustrate the impact of the design choices that lead to its superior performance. We extensively evaluate the quality, diversity, distribution similarity, and biological relevance of the generated sequences using multiple metrics across various modalities. Our approach consistently produces novel, diverse protein sequences that accurately reflect the inherent structural and functional diversity of the protein space. This work advances the field of protein design and sets the stage for conditional models by providing a robust framework for scalable and high-quality protein sequence generation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods