Differentiable Entailment for Parameter Efficient Few Shot Learning

31 Jan 2023  ·  Ethan Kim, Jerry Yang ·

Few-shot learning allows pre-trained language models to adapt to downstream tasks while using a limited number of training examples. However, practical applications are limited when all model parameters must be optimized. In this work we apply a new technique for parameter efficient few shot learning while adopting a strict definition of parameter efficiency. Our training method combines 1) intermediate training by reformulating natural language tasks as entailment tasks \cite{wang_entailment_2021} and 2) differentiable optimization of template and label tokens \cite{zhang_differentiable_2021}. We quantify the tradeoff between parameter efficiency and performance in the few-shot regime and propose a simple model agnostic approach that can be extended to any task By achieving competitive performance while only optimizing 3\% of a model's parameters and allowing for batched inference, we allow for more efficient practical deployment of models.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here