Deriving Neural Architectures from Sequence and Graph Kernels

The design of neural architectures for structured objects is typically guided by experimental insights rather than a formal process. In this work, we appeal to kernels over combinatorial structures, such as sequences and graphs, to derive appropriate neural operations. We introduce a class of deep recurrent neural operations and formally characterize their associated kernel spaces. Our recurrent modules compare the input to virtual reference objects (cf. filters in CNN) via the kernels. Similar to traditional neural operations, these reference objects are parameterized and directly optimized in end-to-end training. We empirically evaluate the proposed class of neural architectures on standard applications such as language modeling and molecular graph regression, achieving state-of-the-art results across these applications.

PDF Abstract ICML 2017 PDF ICML 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here