Densely Distilling Cumulative Knowledge for Continual Learning

16 May 2024  ·  Zenglin Shi, Pei Liu, Tong Su, Yunpeng Wu, Kuien Liu, Yu Song, Meng Wang ·

Continual learning, involving sequential training on diverse tasks, often faces catastrophic forgetting. While knowledge distillation-based approaches exhibit notable success in preventing forgetting, we pinpoint a limitation in their ability to distill the cumulative knowledge of all the previous tasks. To remedy this, we propose Dense Knowledge Distillation (DKD). DKD uses a task pool to track the model's capabilities. It partitions the output logits of the model into dense groups, each corresponding to a task in the task pool. It then distills all tasks' knowledge using all groups. However, using all the groups can be computationally expensive, we also suggest random group selection in each optimization step. Moreover, we propose an adaptive weighting scheme, which balances the learning of new classes and the retention of old classes, based on the count and similarity of the classes. Our DKD outperforms recent state-of-the-art baselines across diverse benchmarks and scenarios. Empirical analysis underscores DKD's ability to enhance model stability, promote flatter minima for improved generalization, and remains robust across various memory budgets and task orders. Moreover, it seamlessly integrates with other CL methods to boost performance and proves versatile in offline scenarios like model compression.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods