Defining Autocatalysis in Chemical Reaction Networks

7 Jul 2021  ·  Jakob L. Andersen, Christoph Flamm, Daniel Merkle, Peter F. Stadler ·

Autocatalysis is a deceptively simple concept, referring to the situation that a chemical species $X$ catalyzes its own formation. From the perspective of chemical kinetics, autocatalysts show a regime of super-linear growth. Given a chemical reaction network, however, it is not at all straightforward to identify species that are autocatalytic in the sense that there is a sub-network that takes $X$ as input and produces more than one copy of $X$ as output. The difficulty arises from the need to distinguish autocatalysis e.g. from the superposition of a cycle that consumes and produces equal amounts of $X$ and a pathway that produces $X$. To deal with this issue, a number of competing notions, such as exclusive autocatalysis and autocatalytic cycles, have been introduced. A closer inspection of concepts and their usage by different authors shows, however, that subtle differences in the definitions often makes conceptually matching ideas difficult to bring together formally. In this contribution we make some of the available approaches comparable by translating them into a common formal framework that uses integer hyperflows as a basis to study autocatalysis in large chemical reaction networks. As an application we investigate the prevalence of autocatalysis in metabolic networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here