DeepChrome 2.0: Investigating and Improving Architectures, Visualizations, & Experiments

24 Sep 2022  ·  Saurav Kadavath, Samuel Paradis, Jacob Yeung ·

Histone modifications play a critical role in gene regulation. Consequently, predicting gene expression from histone modification signals is a highly motivated problem in epigenetics. We build upon the work of DeepChrome by Singh et al. (2016), who trained classifiers that map histone modification signals to gene expression. We present a novel visualization technique for providing insight into combinatorial relationships among histone modifications for gene regulation that uses a generative adversarial network to generate histone modification signals. We also explore and compare various architectural changes, with results suggesting that the 645k-parameter convolutional neural network from DeepChrome has the same predictive power as a 12-parameter linear network. Results from cross-cell prediction experiments, where the model is trained and tested on datasets of varying sizes, cell-types, and correlations, suggest the relationship between histone modification signals and gene expression is independent of cell type. We release our PyTorch re-implementation of DeepChrome on GitHub \footnote{\url{github.com/ssss1029/gene_expression_294}}.\parfillskip=0pt

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here