Deep Pulse-Coupled Neural Networks

24 Dec 2023  ·  Zexiang Yi, Jing Lian, Yunliang Qi, Zhaofei Yu, Huajin Tang, Yide Ma, Jizhao Liu ·

Spiking Neural Networks (SNNs) capture the information processing mechanism of the brain by taking advantage of spiking neurons, such as the Leaky Integrate-and-Fire (LIF) model neuron, which incorporates temporal dynamics and transmits information via discrete and asynchronous spikes. However, the simplified biological properties of LIF ignore the neuronal coupling and dendritic structure of real neurons, which limits the spatio-temporal dynamics of neurons and thus reduce the expressive power of the resulting SNNs. In this work, we leverage a more biologically plausible neural model with complex dynamics, i.e., a pulse-coupled neural network (PCNN), to improve the expressiveness and recognition performance of SNNs for vision tasks. The PCNN is a type of cortical model capable of emulating the complex neuronal activities in the primary visual cortex. We construct deep pulse-coupled neural networks (DPCNNs) by replacing commonly used LIF neurons in SNNs with PCNN neurons. The intra-coupling in existing PCNN models limits the coupling between neurons only within channels. To address this limitation, we propose inter-channel coupling, which allows neurons in different feature maps to interact with each other. Experimental results show that inter-channel coupling can efficiently boost performance with fewer neurons, synapses, and less training time compared to widening the networks. For instance, compared to the LIF-based SNN with wide VGG9, DPCNN with VGG9 uses only 50%, 53%, and 73% of neurons, synapses, and training time, respectively. Furthermore, we propose receptive field and time dependent batch normalization (RFTD-BN) to speed up the convergence and performance of DPCNNs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods