Abstraction Mechanisms Predict Generalization in Deep Neural Networks

ICML 2020  ·  Alex Gain, Hava Siegelmann ·

A longstanding problem for Deep Neural Networks (DNNs) is understanding their puzzling ability to generalize well. We approach this problem through the unconventional angle of \textit{cognitive abstraction mechanisms}, drawing inspiration from recent neuroscience work, allowing us to define the Cognitive Neural Activation metric (CNA) for DNNs, which is the correlation between information complexity (entropy) of given input and the concentration of higher activation values in deeper layers of the network. The CNA is highly predictive of generalization ability, outperforming norm-and-margin-based generalization metrics on an extensive evaluation of over 100 dataset-and-network-architecture combinations, especially in cases where additive noise is present and/or training labels are corrupted. These strong empirical results show the usefulness of CNA as a generalization metric, and encourage further research on the connection between information complexity and representations in the deeper layers of networks in order to better understand the generalization capabilities of DNNs.

PDF Abstract ICML 2020 PDF
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here