Data Representation and Learning With Graph Diffusion-Embedding Networks

CVPR 2019  ·  Bo Jiang, Doudou Lin, Jin Tang, Bin Luo ·

Recently, graph convolutional neural networks have been widely studied for graph-structured data representation and learning. In this paper, we present Graph Diffusion-Embedding networks (GDENs), a new model for graph-structured data representation and learning. GDENs are motivated by our development of graph based feature diffusion. GDENs integrate both feature diffusion and graph node (low-dimensional) embedding simultaneously into a unified network by employing a novel diffusion-embedding architecture. GDENs have two main advantages. First, the equilibrium representation of the diffusion-embedding operation in GDENs can be obtained via a simple closed-form solution, which thus guarantees the compactivity and efficiency of GDENs. Second, the proposed GDENs can be naturally extended to address the data with multiple graph structures. Experiments on various semi-supervised learning tasks on several benchmark datasets demonstrate that the proposed GDENs significantly outperform traditional graph convolutional networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here