Data-driven analysis and controller design for discrete-time systems under aperiodic sampling

4 Jan 2021  ·  Stefan Wildhagen, Julian Berberich, Michael Hertneck, Frank Allgöwer ·

This article is concerned with data-driven analysis of discrete-time systems under aperiodic sampling, and in particular with a data-driven estimation of the maximum sampling interval (MSI). The MSI is relevant for analysis of and controller design for cyber-physical, embedded and networked systems, since it gives a limit on the time span between sampling instants such that stability is guaranteed. We propose tools to compute the MSI for a given controller and to design a controller with a preferably large MSI, both directly from a finite-length, noise-corrupted state-input trajectory of the system. We follow two distinct approaches for stability analysis, one taking a robust control perspective and the other a switched systems perspective on the aperiodically sampled system. In a numerical example and a subsequent discussion, we demonstrate the efficacy of our developed tools and compare the two approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here