Curriculum Design Helps Spiking Neural Networks to Classify Time Series

26 Dec 2023  ·  Chenxi Sun, Hongyan Li, Moxian Song, Derun Can, Shenda Hong ·

Spiking Neural Networks (SNNs) have a greater potential for modeling time series data than Artificial Neural Networks (ANNs), due to their inherent neuron dynamics and low energy consumption. However, it is difficult to demonstrate their superiority in classification accuracy, because current efforts mainly focus on designing better network structures. In this work, enlighten by brain-inspired science, we find that, not only the structure but also the learning process should be human-like. To achieve this, we investigate the power of Curriculum Learning (CL) on SNNs by designing a novel method named CSNN with two theoretically guaranteed mechanisms: The active-to-dormant training order makes the curriculum similar to that of human learning and suitable for spiking neurons; The value-based regional encoding makes the neuron activity to mimic the brain memory when learning sequential data. Experiments on multiple time series sources including simulated, sensor, motion, and healthcare demonstrate that CL has a more positive effect on SNNs than ANNs with about twice the accuracy change, and CSNN can increase about 3% SNNs' accuracy by improving network sparsity, neuron firing status, anti-noise ability, and convergence speed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods