Paper

A New Fine-grained Alignment Method for Image-text Matching

Image-text retrieval is a widely studied topic in the field of computer vision due to the exponential growth of multimedia data, whose core concept is to measure the similarity between images and text. However, most existing retrieval methods heavily rely on cross-attention mechanisms for cross-modal fine-grained alignment, which takes into account excessive irrelevant regions and treats prominent and non-significant words equally, thereby limiting retrieval accuracy. This paper aims to investigate an alignment approach that reduces the involvement of non-significant fragments in images and text while enhancing the alignment of prominent segments. For this purpose, we introduce the Cross-Modal Prominent Fragments Enhancement Aligning Network(CPFEAN), which achieves improved retrieval accuracy by diminishing the participation of irrelevant regions during alignment and relatively increasing the alignment similarity of prominent words. Additionally, we incorporate prior textual information into image regions to reduce misalignment occurrences. In practice, we first design a novel intra-modal fragments relationship reasoning method, and subsequently employ our proposed alignment mechanism to compute the similarity between images and text. Extensive quantitative comparative experiments on MS-COCO and Flickr30K datasets demonstrate that our approach outperforms state-of-the-art methods by about 5% to 10% in the rSum metric.

Results in Papers With Code
(↓ scroll down to see all results)