Conversion and Implementation of State-of-the-Art Deep Learning Algorithms for the Classification of Diabetic Retinopathy

7 Oct 2020  ·  Mihir Rao, Michelle Zhu, Tianyang Wang ·

Diabetic retinopathy (DR) is a retinal microvascular condition that emerges in diabetic patients. DR will continue to be a leading cause of blindness worldwide, with a predicted 191.0 million globally diagnosed patients in 2030. Microaneurysms, hemorrhages, exudates, and cotton wool spots are common signs of DR. However, they can be small and hard for human eyes to detect. Early detection of DR is crucial for effective clinical treatment. Existing methods to classify images require much time for feature extraction and selection, and are limited in their performance. Convolutional Neural Networks (CNNs), as an emerging deep learning (DL) method, have proven their potential in image classification tasks. In this paper, comprehensive experimental studies of implementing state-of-the-art CNNs for the detection and classification of DR are conducted in order to determine the top performing classifiers for the task. Five CNN classifiers, namely Inception-V3, VGG19, VGG16, ResNet50, and InceptionResNetV2, are evaluated through experiments. They categorize medical images into five different classes based on DR severity. Data augmentation and transfer learning techniques are applied since annotated medical images are limited and imbalanced. Experimental results indicate that the ResNet50 classifier has top performance for binary classification and that the InceptionResNetV2 classifier has top performance for multi-class DR classification.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here