Continual Learning from the Perspective of Compression

ICML Workshop LifelongML 2020  ·  Xu He, Min Lin ·

Connectionist models such as neural networks suffer from catastrophic forgetting. In this work, we study this problem from the perspective of information theory and define forgetting as the increase of description lengths of previous data when they are compressed with a sequentially learned model. In addition, we show that continual learning approaches based on variational posterior approximation and generative replay can be considered as approximations to two prequential coding methods in compression, namely, the Bayesian mixture code and maximum likelihood (ML) plug-in code. We compare these approaches in terms of both compression and forgetting and empirically study the reasons that limit the performance of continual learning methods based on variational posterior approximation. To address these limitations, we propose a new continual learning method that combines ML plug-in and Bayesian mixture codes.

PDF Abstract ICML Workshop 2020 PDF ICML Workshop 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here