Constraints on $f(R)$ and nDGP Modified Gravity Model Parameters with Cluster Abundances and Galaxy Clustering

21 Jan 2021  ·  Rayne Liu, Georgios Valogiannis, Nicholas Battaglia, Rachel Bean ·

We present forecasted cosmological constraints from combined measurements of galaxy cluster abundances from the Simons Observatory and galaxy clustering from a DESI-like experiment on two well-studied modified gravity models, the chameleon-screened $f(R)$ Hu-Sawicki model and the nDGP braneworld Vainshtein model. A Fisher analysis is conducted using $\sigma_8$ constraints derived from thermal Sunyaev-Zel'dovich (tSZ) selected galaxy clusters, as well as linear and mildly non-linear redshift-space 2-point galaxy correlation functions. We find that the cluster abundances drive the constraints on the nDGP model while $f(R)$ constraints are led by galaxy clustering. The two tracers of the cosmological gravitational field are found to be complementary, and their combination significantly improves constraints on the $f(R)$ in particular in comparison to each individual tracer alone. For a fiducial model of $f(R)$ with $\text{log}_{10}(f_{R0})=-6$ and $n=1$ we find combined constraints of $\sigma(\text{log}_{10}(f_{R0}))=0.48$ and $\sigma(n)=2.3$, while for the nDGP model with $n_{\text{nDGP}}=1$ we find $\sigma(n_{\text{nDGP}})=0.087$. Around a fiducial General Relativity (GR) model, we find a $95\%$ confidence upper limit on $f(R)$ of $f_{R0}\leq5.68\times 10^{-7}$. Our results present the exciting potential to utilize upcoming galaxy and CMB survey data available in the near future to discern and/or constrain cosmic deviations from GR.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Cosmology and Nongalactic Astrophysics General Relativity and Quantum Cosmology