Constrained Neural Ordinary Differential Equations with Stability Guarantees

Differential equations are frequently used in engineering domains, such as modeling and control of industrial systems, where safety and performance guarantees are of paramount importance. Traditional physics-based modeling approaches require domain expertise and are often difficult to tune or adapt to new systems. In this paper, we show how to model discrete ordinary differential equations (ODE) with algebraic nonlinearities as deep neural networks with varying degrees of prior knowledge. We derive the stability guarantees of the network layers based on the implicit constraints imposed on the weight's eigenvalues. Moreover, we show how to use barrier methods to generically handle additional inequality constraints. We demonstrate the prediction accuracy of learned neural ODEs evaluated on open-loop simulations compared to ground truth dynamics with bi-linear terms.

PDF Abstract ICLR Workshop 2019 PDF ICLR Workshop 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here