Consensus-Threshold Criterion for Offline Signature Verification using Convolutional Neural Network Learned Representations

5 Jan 2024  ·  Paul Brimoh, Chollette C. Olisah ·

A genuine signer's signature is naturally unstable even at short time-intervals whereas, expert forgers always try to perfectly mimic a genuine signer's signature. This presents a challenge which puts a genuine signer at risk of being denied access, while a forge signer is granted access. The implication is a high false acceptance rate (FAR) which is the percentage of forge signature classified as belonging to a genuine class. Existing work have only scratched the surface of signature verification because the misclassification error remains high. In this paper, a consensus-threshold distance-based classifier criterion is proposed for offline writer-dependent signature verification. Using features extracted from SigNet and SigNet-F deep convolutional neural network models, the proposed classifier minimizes FAR. This is demonstrated via experiments on four datasets: GPDS-300, MCYT, CEDAR and Brazilian PUC-PR datasets. On GPDS-300, the consensus threshold classifier improves the state-of-the-art performance by achieving a 1.27% FAR compared to 8.73% and 17.31% recorded in literature. This performance is consistent across other datasets and guarantees that the risk of imposters gaining access to sensitive documents or transactions is minimal.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here