Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning

1 Oct 2021  ·  Chi-Ken Lu, Patrick Shafto ·

It is desirable to combine the expressive power of deep learning with Gaussian Process (GP) in one expressive Bayesian learning model. Deep kernel learning showed success in adopting a deep network for feature extraction followed by a GP used as function model. Recently,it was suggested that, albeit training with marginal likelihood, the deterministic nature of feature extractor might lead to overfitting while the replacement with a Bayesian network seemed to cure it. Here, we propose the conditional Deep Gaussian Process (DGP) in which the intermediate GPs in hierarchical composition are supported by the hyperdata and the exposed GP remains zero mean. Motivated by the inducing points in sparse GP, the hyperdata also play the role of function supports, but are hyperparameters rather than random variables. We follow our previous moment matching approach to approximate the marginal prior for conditional DGP with a GP carrying an effective kernel. Thus, as in empirical Bayes, the hyperdata are learned by optimizing the approximate marginal likelihood which implicitly depends on the hyperdata via the kernel. We shall show the equivalence with the deep kernel learning in the limit of dense hyperdata in latent space. However, the conditional DGP and the corresponding approximate inference enjoy the benefit of being more Bayesian than deep kernel learning. Preliminary extrapolation results demonstrate expressive power from the depth of hierarchy by exploiting the exact covariance and hyperdata learning, in comparison with GP kernel composition, DGP variational inference and deep kernel learning. We also address the non-Gaussian aspect of our model as well as way of upgrading to a full Bayes inference.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods