Concurrent Learning of Semantic Relations

26 Jul 2018  ·  Georgios Balikas, Gaël Dias, Rumen Moraliyski, Massih-Reza Amini ·

Discovering whether words are semantically related and identifying the specific semantic relation that holds between them is of crucial importance for NLP as it is essential for tasks like query expansion in IR. Within this context, different methodologies have been proposed that either exclusively focus on a single lexical relation (e.g. hypernymy vs. random) or learn specific classifiers capable of identifying multiple semantic relations (e.g. hypernymy vs. synonymy vs. random). In this paper, we propose another way to look at the problem that relies on the multi-task learning paradigm. In particular, we want to study whether the learning process of a given semantic relation (e.g. hypernymy) can be improved by the concurrent learning of another semantic relation (e.g. co-hyponymy). Within this context, we particularly examine the benefits of semi-supervised learning where the training of a prediction function is performed over few labeled data jointly with many unlabeled ones. Preliminary results based on simple learning strategies and state-of-the-art distributional feature representations show that concurrent learning can lead to improvements in a vast majority of tested situations.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here