Computationally Efficient Estimation of the Spectral Gap of a Markov Chain

15 Jun 2018  ·  Richard Combes, Mikael Touati ·

We consider the problem of estimating from sample paths the absolute spectral gap $\gamma_*$ of a reversible, irreducible and aperiodic Markov chain $(X_t)_{t \in \mathbb{N}}$ over a finite state space $\Omega$. We propose the ${\tt UCPI}$ (Upper Confidence Power Iteration) algorithm for this problem, a low-complexity algorithm which estimates the spectral gap in time ${\cal O}(n)$ and memory space ${\cal O}((\ln n)^2)$ given $n$ samples. This is in stark contrast with most known methods which require at least memory space ${\cal O}(|\Omega|)$, so that they cannot be applied to large state spaces. Furthermore, ${\tt UCPI}$ is amenable to parallel implementation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here