Complexity Bounds for the Controllability of Temporal Networks with Conditions, Disjunctions, and Uncertainty

8 Jan 2019  ·  Nikhil Bhargava, Brian Williams ·

In temporal planning, many different temporal network formalisms are used to model real world situations. Each of these formalisms has different features which affect how easy it is to determine whether the underlying network of temporal constraints is consistent. While many of the simpler models have been well-studied from a computational complexity perspective, the algorithms developed for advanced models which combine features have very loose complexity bounds. In this paper, we provide tight completeness bounds for strong, weak, and dynamic controllability checking of temporal networks that have conditions, disjunctions, and temporal uncertainty. Our work exposes some of the subtle differences between these different structures and, remarkably, establishes a guarantee that all of these problems are computable in PSPACE.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here