Collaborative Learning with Different Labeling Functions

16 Feb 2024  ·  Yuyang Deng, Mingda Qiao ·

We study a variant of Collaborative PAC Learning, in which we aim to learn an accurate classifier for each of the $n$ data distributions, while minimizing the number of samples drawn from them in total. Unlike in the usual collaborative learning setup, it is not assumed that there exists a single classifier that is simultaneously accurate for all distributions. We show that, when the data distributions satisfy a weaker realizability assumption, which appeared in [Crammer and Mansour, 2012] in the context of multi-task learning, sample-efficient learning is still feasible. We give a learning algorithm based on Empirical Risk Minimization (ERM) on a natural augmentation of the hypothesis class, and the analysis relies on an upper bound on the VC dimension of this augmented class. In terms of the computational efficiency, we show that ERM on the augmented hypothesis class is NP-hard, which gives evidence against the existence of computationally efficient learners in general. On the positive side, for two special cases, we give learners that are both sample- and computationally-efficient.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here