Co-learning Planning and Control Policies Constrained by Differentiable Logic Specifications

2 Mar 2023  ·  Zikang Xiong, Daniel Lawson, Joe Eappen, Ahmed H. Qureshi, Suresh Jagannathan ·

Synthesizing planning and control policies in robotics is a fundamental task, further complicated by factors such as complex logic specifications and high-dimensional robot dynamics. This paper presents a novel reinforcement learning approach to solving high-dimensional robot navigation tasks with complex logic specifications by co-learning planning and control policies. Notably, this approach significantly reduces the sample complexity in training, allowing us to train high-quality policies with much fewer samples compared to existing reinforcement learning algorithms. In addition, our methodology streamlines complex specification extraction from map images and enables the efficient generation of long-horizon robot motion paths across different map layouts. Moreover, our approach also demonstrates capabilities for high-dimensional control and avoiding suboptimal policies via policy alignment. The efficacy of our approach is demonstrated through experiments involving simulated high-dimensional quadruped robot dynamics and a real-world differential drive robot (TurtleBot3) under different types of task specifications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here